Preference-Based Daily Diet Optimization

Group 6 Baihan Lin, Daehyun Kim, Xinyuan Liu, Yijun Ma

Problem

- Find an optimal diet for our group members with maximum happiness
 - Food dataset from Public Health England's governmental website
 - Based on preference of different categories of food
 - o Constraints: fulfilling nutrient requirements
- Method: linear programming
- Modeled as a modified knapsack problem

Background

Related diet problem:

Stifler Diet (1939): wanted to find the amount of each of 77 items of food to be eaten per day in order to at least meet the requirements of dietary allowances suggested by National Research Council with minimal cost.

Mathematical Model

Objective:

$$\mathbf{H} = \sum_{j=0}^{2834} p_j X_j$$

H: happiness score

 p_i : each food item's preference rating

 X_i : amount of each food item in 100 grams

Constraints:

$$\sum_{j=0}^{2834} n_j X_j \leq N_{max}$$

$$\sum_{j=0}^{2834} n_j X_j \geq N_{min}$$

 N_i : amount of nutrient in 100 grams of each food item N_i : N_{max}/N_{min} : maximum/minimum daily recommended values for each nutrient

Nutrients include: protein (g), fat (g), carb (g), energy (kcal), sat_fat (g), trans_fat (g), cholesterol (mg), sodium (mg), potassium (mg), calcium (mg), Vitamin D (mcg), Vitamin E (mg), Vitamin B6 (mg), Vitamin B12 (mcg), and Vitamin C (mg)

Constraints:

$$\sum_{i=0}^{2834} X_i \leq B_{max}$$
 for all X_i 's in the group of beverages and alcoholic beverages where $B_{max} = 30$ hunderd grams (≈ 96 ounces)
$$X_i \leq 30 \quad (i=0,\,1,\,2\,\ldots\,,\,2834)$$

Implementation

- 1. Data Arrangement
- 2. Lpsolve Script Generation
- 3. Lpsolve Analysis

Implementation

Data Arrangement

Food Cod Food Name

13-146 Agar, dried

13,149

14-001

Ackee, canned, drained 8 cans

Apple sauce, homemad Recipe

No stones

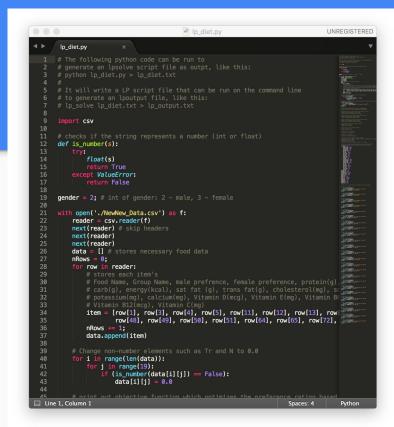
Allspice, ground

Apricots, dried

Almonds toasted

Description

Food sub-group codes	Codes	Subject 1	Subject 2	Subject 3	Subject 4	average(m	average(fe
Cereals and cereal produ	c A	6	4	3	4	5	3.5
Flours, grains and starches	AA	5	2	3	4	3.5	3.5
Sandwiches AB	AB	9	7	3	2	8	2.5
Rice AC	AC	8	4	3	4	6	3.5
Pasta AD	AD	4	5	3	3	4.5	3
Pizzas AE	AE	7	6	2	1	6.5	1.5
Breads AF	AF	3	2	4	5	2.5	4.5
Rolls AG	AG	2	2	4	4	2	4
Breakfast cereals Al	Al	1	1	5	4	1	4.5
Infant cereal foods AK	AK	1	3	1	3	2	2
Biscuits AM	AM	3	4	4	5	3.5	4.5
Cakes AN	AN	5	9	5	6	7	5.5
Pastry AO	AO	1	5	3	4	3	3.5
Buns and pastries AP	AP	1	7	2	5	4	3.5
Puddings AS	AS	1	8	5	4	4.5	4.5
Savouries AT	AT	1	3	1	5	2	3
Milk and milk products B	В	4	4	4	4	4	4
Cows milk BA	BA	3	3	4	4	3	4
Breakfast milk BAB	BAB	3	3	4	5	3	4.5
Skimmed milk BAE	BAE	3	1	5	4	2	4.5
Semi-skimmed milk BAH	BAH	3	1	5	4	2	4.5
Whole milk BAK	BAK	4	6	3	5	5	4


Script: Bash OS: Mac X SW: iTerm2

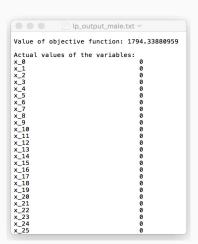
WATER TOTNIT PROT FAT CHO KCALS KJ STAR OLIGO TOTSUGGLUC GALACTERUCT SUCR MALT LACT ALCO ENGFIB Carbohyd keal Oligosacc Total sugi Glucose Galactose Fructose Sucrose 554 MW4, 1978; and Vegetables, 0.46 2.9 0.8 625 0.8 0.1 0.0 0.0 0.26 Wu Leung et al. (1972) Food 6.5 1.2 0.0 0.0 81.1 Literature sources 1.3 0.0 0.0 0.0 6.5 Wu Leung et al. (1972) Food 84.2 0.03 0.0 0.0 15.0 Agar, dried, soaked and Literature sources 0.7 0.0 Marsh et al. (1977) Composit 8.5 4.07 55.8 7.4 6.5 14-801 14 Reviewed 2013. LGC, Snack 4.2 Almonds, flaked and gr 10 samples McCarthy and Matthews (19) 4 14 56.7 621 4.3 0.0 7.5 Literature sources and calcul GA Almonds, weighed with Calculated from 14-870 Fruit and Nut Supplement, 19 1.5 1.51 7.8 20.6 0.0 Amaranth leaves, boile Calculation from raw Wu Leung et al. (1972) Food 90.4 0.48 3.0 0.3 0.3 0.2 Tr 0.3 Wu Leung et al. (1972) Food 88.9 6.5 0.56 3.5 0.3 0.2 Tr 0.0 Amaranth leaves, raw Literature sources Gopalan et al. (1980) Nutritiv 81.8 Literature sources 0.08 0.5 0.1 4.03 Data from Fish and Fish Prod 46.4 Anchovies, canned in o 10 samples, 4 brands 25.2 Marsh et al. (1977) Composit 9.5 Fruit and Nuts Supplement, 1 31.4 223 952 Apple juice concentrate 10 samples, 68.6 Brix; impor PE 0.08 0.5 0.6 DH. Nutrient analysis of fruit 86.6 0.02 157 Apple juice, clear, amb 10 samples, 9 brands, from c FC 0.1 Updated 2014 0.04 0.3 0.2 20.2 Apples, cooking, baked Calculated from 672g apple (FA 0.02 0.2 0.4 8 14-007 Updated 2014 67.1 Apples, cooking, baked Calculated from 14-344 usin FA 0.02 0.3 14.3 2.0 0.0 6.8 Apples, cooking, baked Calculated from 14-320 FA DH, Nutrient analysis of fruit 0.02 0.2 0.4 11.4 0.0 1.9 DH. Nutrient analysis of fruit 71.4 0.02 0.2 9.6 Apples, cooking, baked Calculated from 14-342 usin FA 8 14-011 Apples, cooking, raw, f Bramley apples and unspecif F 7.5 14-002 LGC, Nutritional composition 87.7 0.05 Apples, cooking, raw, f Bramley variety; calculated f F Apples, cooking, stewe Calculated from stewed with FA 0.03 DH, Nutrient analysis of fruit 87.3 0.02 0.3 40 169 9.7 Apples, cooking, stewe 22 samples, autumn and win FA 0.2 LGC, Fruit and vegetables, 1 21.6 DH, Nutrient analysis of fruit 86.2 DH, Nutrient analysis of fruit 75.0 LGC, Nutritional composition 14.7 Fruit and Nuts Supplement, 1 61.8 Apples, eating, dried 6 samples, 3 brands and calc FA 0.32 2.0 0.5 60.1 238 1014 60.1 19.9 Apples, eating, raw, fle 22 samples, autumn and wint FA 0.10 0.6 0.5 11.6 2.8 Apples, eating, raw, fle Calculated from 14-319 usin FA 0.08 0.5 0.4 10.0 5.8 0.77 43.4 20.8 22.0 8.7 4.8 0.7 43.4 188 802 10.0 12.6 22.0 Apricots, dried, stewed Calculated from 450g fruit, 7FA 0.30 1.9 0.3 8.9 4.4 2.0 0.3 17.8 17.8 8.8 Apricots, dried, stewed Calculated from 450g fruit, 7FA 4.7 0.0 0.0 3.2 7.2 0.0 0.9 0.1 7.2 1.6 Apricots, raw, flesh and 18 samples 0.9 4.6 0.0 0.13 0.8 Apricots, raw, flesh and Calculated from 14-025 0.0

Group Male Pref Female Pi Previous Main data referenc Footnote Water (g) Total nitre Protein (g Fat (g) Carbohyd Energy (k Energy (k Energy (k Energy (t Ene

Implementation

- 1. Data Arrangement
- 2. Lpsolve Script Generation
- 3. Lpsolve Analysis

Script: Python OS: Windows 10


SW: Eclipse, Python 3.5.1

Implementation

- Data Arrangement
- 2. Lpsolve Script Generation
- 3. Lpsolve Analysis

Script: Ipsolve OS: Mac X SW: Ipsolve

lp orig male.txt Value of objective function: 1794,33880959 Actual values of the variables: Food Name Group Name Variable 100g of food to consume daily (opt value) Chicory, pale variety, boiled in unsalted water x_716 FA x_853 Duck, raw, meat only, weighed with fat, skin and bone MCC x 1049 2.94369 Fennel, Florence, boiled in unsalted water DG x_1089 8.29889 Fruit juice drink/squash, no sugar added, diluted PCC x 1162 Gourd, ridge, raw DG x_1199 21.6347 Jackfish, raw x 1316 0.46012 x_1327 Jelly, sugar free, made with water FC 30 Lemon juice, fresh, weighed as whole fruit x 1492 Lime juice, fresh FC x 1520 15,6523 DG x_1575 Marrow, boiled in unsalted water DG Mushrooms, white, raw x_1699 3.7122 x_1760 0.0189024 Orange juice, ambient, UHT FC FA Passion fruit, flesh and pips, weighed with skin x_1817 Rock Salmon/Dogfish, raw x_2346 0.990351

Model

Implementation

- 1. Data Arrangement
- 2. Lpsolve Script Generation
- 3. Lpsolve Analysis

Script: Python OS: Windows 10

OS: Windows 10

SW: Eclipse, Python 3.5.1

```
UNREGISTERED
      import fileinput
       import csv
      with open('./NewNew_Data.csv') as f:
          reader = csv.reader(f)
          next(reader) # skip headers
          data = [] # stores necessary food data
          nRows = 0;
          for row in reader:
              item = [row[1], row[3], row[4], row[5], row[11], row[12], row[13], row[
                      row[48], row[49], row[50], row[51], row[64], row[65], row[72],
              data.append(item)
    # get the results from the input file
for line in fileinput.input():
          if line.startswith('x'):
              output = line.split()
               if output[1] != '0':
                  var_num = int(re.search(r'\d+', output[0]).group())
                  item = [data[var_num][0], data[var_num][1], output[0], output[1]]
                  print ('{0[0]:<60}{0[1]:<15}{0[2]:<15}{0[3]:<30}'.format(item))</pre>
                line.startswith('Actual'):
                  print(line)
☐ Line 23, Column 57
                                                                           Spaces: 4
```

Solution: Male

Value of objective function: 1794.33880959

Actual values of the variables:

Cood Nome

Food Name	Group Name	Variable	100g of food to consume daily (opt value)
Chicory, pale variety, boiled in unsalted water	DG	x_716	30
Cranberries	FA	x_853	30
Duck, raw, meat only, weighed with fat, skin and bo	ne MCC	x_1049	2.94369
Fennel, Florence, boiled in unsalted water	DG	x_1089	8.29889
Fruit juice drink/squash, no sugar added, diluted	PCC	x_1162	30
Gourd, ridge, raw	DG	x_1199	21.6347
Jackfish, raw	JC	x_1316	0.46012
Jelly, sugar free, made with water	BR	x_1327	30
Lemon juice, fresh, weighed as whole fruit	FC	x_1492	30
Lime juice, fresh	FC	x_1520	15.6523
Marrow, boiled in unsalted water	DG	x_1575	30
Mushrooms, white, raw	DG	x_1699	3.7122
Orange juice, ambient, UHT	FC	x_1760	0.0189024
Passion fruit, flesh and pips, weighed with skin	FA	x_1817	30
Rock Salmon/Dogfish, raw	JA	x_2346	0.990351

100m of food to consume deily (ont value)

Solution: Female

Value of objective function: 1639.81681676

Actual values of the variables:

Food Name	Group Name	Variable	100g of food to consume daily (opt value)
Chicory, pale variety, boiled in unsalted water	DG	x_716	30
Cranberries	FA	x_853	30
Fennel, Florence, boiled in unsalted water	DG	x_1089	9.78434
Gourd, ridge, raw	DG	x_1199	2.39609
Jackfish, raw	JC	x_1316	0.809946
Jelly, sugar free, made with water	BR	x_1327	30
Lemon juice, fresh, weighed as whole fruit	FC	x_1492	30
Limes, flesh only, weighed with peel and pips	FA	x_1522	20.8073
Marrow, boiled in unsalted water	DG	x_1575	30
Mushrooms, white, raw	DG	x_1699	3.72073
Nutmeg, ground	Н	x_1731	0.269869
Orange juice, ambient, UHT	FC	x_1760	0.0146341
Passion fruit, flesh and pips, weighed with skin	ı FA	x_1817	25.8045
Rock Salmon/Dogfish, raw	JA	x_2346	0.490755
Tea, black, infusion, average	PAA	x_2647	30

Variations

- Unhappy case: minimize our satisfaction but in a healthy way
 - Try to minimize our happiness and keep enough daily nutrition
 - the value of objective functions for male (8.33620465) and female (15.27183148) both
 decrease sharply
 - the numbers of food in the optimal food list for male and female are less than original model
 - Male: seven kinds of food (originally fifteen)
 - Female: nine kinds of food (originally fifteen)

Variations

- Vegetarian case: maximize our preference with a vegetarian diet
 - We modify our model and add some constraints that set the amount of all the food that made with meat and fish to zero
 - o optimal happiness scores \mathbf{H}_{max} = 1454.78168382 for male,

$$\mathbf{H}_{\text{max}}$$
 = 1296.64981001 for female

- substituting meat and fish will reduce our happiness when we have the same nutrient constraints as before
- consume more cereals and dairy to fulfill the nutrient need

Variations

- Diversity case: maximize our happiness with plenty of diversity of food items
 - We modify the original model to enlarge our possibility to getting more different types of food
 - we bound each group with an upper limit so that we cannot eat more than 1000 grams of any food for a single day
 - The maximum happiness score drop from 1794.33880959 to 618.16189370 for male and from 1639.81681676 to 558.85880275 for female
 - male can consume food from 14 kind of groups,
 female can consume food from 13 different groups,
 originally both male and female eat food from 8 different groups

Conclusions

From original study

- To maximize our happiness, a daily diet should consist of mostly fruits and vegetables.
- For non-vegetarians, fish seems to be the most nutritious meat type.
- Debatably, from our results, male seem to be more easily satisfied than female.

From variation studies

- To make oneself unhappy, breakfast cereal and milk/cheese might be good choices for male and female respectively.
- For vegetarians, with vegetables and fruits they could never be alone and sick.
- Having a diverse diet → a more balanced diet + a lower happiness level.

Conclusions

Limitations:

- Preference scores based on the small survey within our group (n=4), not representative
- The survey was inevitably focused on each food group, instead of individual food.
- Based on the dataset by Public Health England, cannot cover all U.S. foods

Further studies:

- Preference scores based on bigger survey randomly sampled from different populations.
- Survey focusing on individual food.
- Based on the dataset by U.S. Department of Agriculture
- Personal diet based on individuals

References

- 1. American Heart Association, "Know Your Facts" http://www.heart.org/HEARTORG/Conditions/Cholesterol/PreventionTreatmentofHighCholesterol/Know-Your-Fats_UCM_305628_Article.js
 http://www.heart.org/HEARTORG/Conditions/Cholesterol/PreventionTreatmentofHighCholesterol/Know-Your-Fats_UCM_305628_Article.js
 py.new.heart.org/HEARTORG/Conditions/Cholesterol/PreventionTreatmentofHighCholesterol/Know-Your-Fats_UCM_305628_Article.js
- 2. ConsumerLab, "Recommended Daily Intakes and Upper Limits for Nutrients" http://www.consumerlab.com/RDAs/
- 3. Sourceforge, "Ipsolve" https://sourceforge.net/projects/lpsolve/
- 4. NEOS, "The Diet Problem" http://www.neos-guide.org/content/diet-problem
- 5. Public Health England, "McCance and Widdowson's The Composition of Foods Integrated Dataset 2015" https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid
- 6. SF Gate, "Daily Amounts of Carbs, Fat, Fiber, Sodium & Protein" http://healthyeating.sfgate.com/daily-amounts-carbs-fat-fiber-sodium-protein-4230.html
- 7. Sparkpeople, "Healthy Beverage Guidelines" http://www.sparkpeople.com/resource/nutrition_articles.asp?id=605
- 8. US Department of Argriculture, "Estimated Calorie Needs per Day by Age, Gender, and Physical Activity Level" https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/EstimatedCalorieNeedsPerDayTable.pdf
- 9. US Food and Drug Administration, "Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients)"

 http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm064928.htm
- 10. Vegetarian Resource Group, "Veganism in a Nutshell" http://www.vrg.org/nutshell/vegan.htm#what
- 11. Wikipedia, "Knapsack problem" https://en.wikipedia.org/wiki/Knapsack_problem
- 12. Wikipedia, "Stigler Diet" https://en.wikipedia.org/wiki/Stigler_diet

Questions?

