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Introduction

Though the fossil fuel has accounted for the greatest portion of energy sources since it

started being used in 1800s, concerns about its limited amount and the destruction of the

environment caused by it have led to growing demands for alternative energy sources. Out

of many developing alternative energy sources, wind energy is one of the key sustainable

energy sources due to multiple advantages it has. Wind energy does not cause air pollution

as does the fossil fuel, and according to the Wind Vision report, wind energy has the

potential to reduce overall greenhouse gas emissions by 14%, saving $400 billion in avoided

damage by 2050 [4]. Wind energy is also a cost-effective, inexhaustible energy source from

the prolific wind supply in the U.S. [4]. Despite these plus points of the wind energy, its

nature of uncertainty and variability present some challenges. Uncertainty basically refers to

unpredictability in that it is impossible to have a perfect forecast of wind power. Variability,

on the contrary, lies in the oscillating nature of wind power. In order to manage the wind

power generating system in the most stable and effective manner given the challenges, it

is necessary to develop and test advanced wind modeling and forecasting algorithms. In

this paper, multiple machine learning algorithms that are widely utilized in the field will be

evaluated through the comparison between the predicted and real values. The algorithms will

be tested with the Western Wind Integration Data Set in 2006 from the National Renewable

Energy Laboratory, NREL, which was designed for wind integration studies in the United

States. The input data will be pre-processed in Python scripts to generate training and

testing set, and these feature sets will be implemented in the open-source machine learning

package called Scikit-Learn to produce wind power modeling. Then, the resulting prediction

will be evaluated based on the errors from the real data set. Finally, other variations as well

as further studies will be discussed.
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Background

There exist many prediction algorithms that are developed by researchers to provide advanced

data modeling. This paper will explore a portion of the widely-used regression algorithms,

which include Neural Networks, Random Forest, Gradient Boosting, Nearest Neighbor,

Support Vector Machines, Kernel Ridge Regression, and the most basic Linear Regression.

This section will briefly discuss each algorithm’s structure and function. Neural Networks are

modeled after “the neuronal structure of the mamalian cerebral cortex” [8]. Neural Networks

are composed of multi-perceptron layers. Among these layers are the input layer through

which patterns are presented to, the hidden layer where the actual processing is done by

weighted connections, and the outer layer which outputs the result as in Figure 1 below.

Neural Networks are good with noisy data and when the function mapping between input

and output data is unknown. It, however, is difficult to comprehend the resulting weights

and may also take longer than other methods.

Figure 1. Neural Networks

Random Forest is one of the ensemble methods. Ensemble methods combine individual

weak approximations to form a strong approximation to the data. Random Forest is a

strong approximation made up of many weak decision trees where a decision tree is a tree

in which an input is entered at the top and the data gets divided into smaller sets down the

tree [2]. In a Random Forest, a new input is run down all of the trees and the average of the

terminal nodes is generally the final output. This algorithm is relatively fast and good with

unbalanced data, whereas there is a chance of overfitting noisy data.

Another popular ensembling method is Gradient Boosting. It also combines weak learners

into a strong learner, but in a sequential manner which is called boosting compared to

bootstrapping of Random Forest. Here, the loss function, y = ax+ b+e where e is the error,

is gradually minimized with the Gradient Descent algorithm [5].
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k Nearest Neighbors in regression is a simple algorithm which outputs the average of the

values of k nearest neighbors around the known object value. It can assign weight to the

neighbors so that the nearer neighbors contribute more to the output than the farther ones.

The lazy algorithm is effective with large, noisy data set, but there is the need to tune

parameter k [7].

Support Vector Machines, usually called SVM, utilize a separating hyperplane that maximizes

the margin of the training data as in Figure 2. In other words, they find a hyperplane that

best divides the training set into two classes. SVM are good with smaller, clean datasets and

more space-efficient from using a subset of training data. They are, however, not as good

with larger, noisy datasets [6].

Figure 2. Support Vector Machine

Kernel Ridge Regression combines Ridge Regression with the kernel trick. Ridge regression

adds a regularization penalty to the cost, and Kernel Ridge Regression performs this in

feature space by mapping data to higher dimensional space, which is called the kernel method

[1].

Linear regression, the most basic form of regression methods, was implemented as well.

Linear regression models the relationship between variables by fitting a linear equation to

observed data [3]. Most commonly used technique for fitting a line is the least-squares

approximation. This method minimizes the sum of the squares of the deviations from each

data to the line.
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Implementation

The wind data was collected from the Western Wind Integration Data Set in 2006 from

the NREL. The entire implementation process consists of two stages: pre-processing and

scenario generation. Figure 3 demonstrates a flowchart of the entire process.

Figure 3. Implementation Flowchart

Pre-Processing

The pre-processing phase collects wind speed and power data from the NREL West in 2006.

The data is in the form of csv files containing wind power and wind speed in 10-min resolution

for 230 wind sites. These wind sites are then grouped into 19 wind farms corresponding to

their locations and the wind speed and power values are averaged for each wind farm in

an hourly resolution. These values are normalized and divided by 30MW, which is the

capacity of the wind farm. This process is done in the Python script called “read” using

NumPy package. Another script called “parameter gen” is a simple program that loads

multiple parameters given the input in this case the wind power. Some of the parameters

include “time lead”-the number of hours ahead of the prediction-, local historical hours,

and resolution. The time lead has a big influence on the accuracy of modeling, and for

this prediction, it is set to be 1 day. The local historical hours indicate the effect of recent

information, and it is set to be 7 days as a number that is not too big nor too small. The

last sub-script is called “feature build” and this script builds the input features and output

target from known time series utilizing the results from “read” and “parameter gen”. The

input features include the most recent power and near future prediction, and the output

target refers to the actual power output. All three scripts are called in the main script as
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functions. The resulting input features and output target are then used for building training

and testing sets. Day 124, day 221, and day 306 were randomly chosen out of the year for

testing and prediction hours are up to 7 days, the number of local historical hours, after those

days. For generating the prediction curves, only three farms-farm 1, farm 4, and farm 7-

were tested, though these example testing days and farms can be manipulated in the script.

The length of the training sets were initialized at 2160 hours which equals to 90 days. There

are four sets to be generated: Feature Train, Target Train, Feature Test, and Target Test

(These are coded as xTr, yTr, xTe, and yTe respectively). Feature Train and Target Train

contain feature and target data for the 90-day period before the testing day. These two

sets will be used to fit the model for each algorithm. Feature Test and Target Test contain

feature and target data for a week after the testing day. These two sets are used to evaluate

the performance of the trained model for each algorithm. All of the pre-processing scripts

can be accessed in the Appendix section.

Scenario Generation

Figure 4. Scikit-Learn

After generating training and testing sets, the open-source package called Scikit-Learn (in

Figure 4) is implemented in the main script to fit the model. This process is exercised in a

simple manner given the built-in functions in the package. For example, a function called

“fit” will fit the model using the training sets, and another function called “predict” will

predict the target power using the Feature Test set, which would be later compared to the

real Target Test set as a measure of each algorithms performance. After this prediction

step, the prediction result is filtered to be in between 0 and 1 because wind power cannot be
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less than 0 or more than 1 after normalized. In order to quantify the performance of each

machine learning algorithm, root mean squared error and mean absolute error are calculated

using the Target Test set and the prediction result. The package also has a built-in measure

of coefficients of determination, also known as “R sqaured,” which stands for the proportion

of the variance in the dependent variable that is predictable from the independent variable.

The additional mean of evaluating algorithms includes the computing time which measures

the time it takes for each algorithm to fit the model and predict. After the process with the

package, MatplotLib in Python is utilized to create graphical results for each testing day and

testing farm demonstrating how each algorithm compares to the real target data. Moreover,

the calculated errors, coefficients of determination, and computing time are visualized for

all 19 farms, which provide the quantitative measures of the performance of each algorithm.

Lastly, the same visual representations will be proceeded with varied time leads to understand

what impact time lead has on the performance of each algorithm. The three different main

scripts that contain the scenario generation phase are attached in the Appendix section.

7



Results

The following three figures are the results of the prediction process. The first figure represents

the predicted power generated for 7 days from the requested testing day for the Farm 102,

the first farm. The other two figures are the same visuals but for Farm 117 and Farm

120, the fourth farm and the seventh farm respectively. These images merely provide

the general sense of which algorithms prediction diverges away from the real data, but

it is hard to observe the images and have a quantitative understanding of each algorithms

performance. Some consistent pattern we can deduce from these three graphs is that Nearest

Neighbor represented by a pink curve constantly deviates from the read data represented

by a dotted line. Also another interesting aspect is the result for the seventh farm, Farm

120, indicates that Random Forest and Gradient Boosting, represented by blue and sky blue

curves respectively, have a poor prediction unlike for the other two results.

Figure 5. Prediction for Farm102 Figure 6. Prediction for Farm117

Figure 7. Prediction for Farm120

In order to evaluate the performance of each algorithm in a quantitative manner, a simple

command in the package that calculates the coefficient of determination, the proportion of

a dependent variable that can be predicted from an independent variable, was implemented

(1-the highest possible and 0-the lowest). Other measures that were implemented in the

code include root mean squared error (RMSE), mean absolute error (MAE), and computing

time, which are self-explanatory. These performance measurements were calculated not only

based on the three example farms, but on the entire 19 farms.
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Figure 8. RMSE

Figure 9. MAE

From Figure 8 and Figure 9, both RMSE and MAE graphs were consistent in giving Nearest

Neighbor, the red line, as the most poorly predicted algorithm. The second worst algorithm

was the Nearest Neighbor, the green line. The best two algorithms for the prediction were

Random Forest and Gradient Boosting, purple and blue respectively. As mentioned before,

these two best algorithms had some issues on the seventh farm so they have a sudden spike

in error at that point. Kernel Ridge Regression had the biggest errors out of the three middle

ground algorithms. The other two of the three, Support Vector Machine and unexpectedly

Linear Regression had slightly better errors than Kernel Ridge, but it can be concluded that

these three had similar errors.
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Figure 10. Coefficient of Determination

Coefficient of Determination graph demonstrates a similar pattern as the error graphs. The

top two, Gradient Boosting and Random Forest mostly have the coefficient of determination

very close to the maximum 1.0, with the same spike on the seventh farm. Other four

algorithms except Nearest Neighbor exhibits fairly high coefficients of determination higher

than 0.8. The Nearest Neighbor is far off from the rest with coefficient of determination

around 0. These error and R squared graphs have indicated that some of these algorithms are

extremely incompetent in predicting the output correctly compared to the other algorithms.

This is not completely true, because there barely was parameter tuning stage if at all, due

to lack of time. For example, the two poorly done algorithmsNearest Neighbor and Neural

Networksare known to be greatly influenced by their parameters such as k, number of nearest

neighbors and number of neurons in the hidden layer respectively. This parameter tuning

would have enhanced the performance of the algorithms to a large degree and it could be

verified in the further studies.
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Figure 11. Computing Time

The computing time graph says something different from the other measures. The best two

algorithms in terms of the prediction result, Gradient Boosting and Random Forest were the

worst two here with the highest computing time. Linear Regression expectedly was the best

algorithm in terms of computing time given its simple nature. Except Linear Regression, the

general pattern here was the algorithms with good prediction results took longer computing

time and those with bad results did not have as much computing time.
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Variations

For the main prediction process, time lead, number of hours ahead of the prediction, was

pre-defined as 1 day. The time lead has a significant impact on the prediction performance

because a smaller time lead results in a better modeling, while a bigger time lead causes

more errors while simulating a realistic forecast. With forecast data given, the time lead can

be manipulated to varied numbers as large as 24 days before running the prediction process.

As mentioned above, making the time lead that large would indicate that the prediction is

truly exercising the short-term forecast.

Figure 12. Farm102 1 day Figure 13. Farm102 24 days

The result of increasing time lead from 1 day to 24 days for the first farm, Farm 102, is

displayed on the above two graphs. It is evident that the increased time lead has enlarged

the deviation errors to a great degree. Not only the previously poorly done Nearest Neighbor

but also are the rest of the algorithms far off the real data. Only Gradient Boosting shown

by the orange line fairly overlaps the real data, the dotted line. The similar results for the

other two example farms, 117 and 120, are included in the Appendix. This correlation is even

more noticeable in the charts that compute the errors and coefficient of determination for the

varied time leads. The following charts averaged the errors and coefficient of determination

among the first 10 farms-all 19 farms consume too much time- for multiple time leads: 1, 2,

4, 6, 12, and 24 days.
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Figure 14. RMSE Variation

Figure 15. MAE Variation

Both RMSE and MAE charts for varied time leads indicate a similar pattern that the longer

the time lead, the larger the deviation errors. Even though Gradient Boosting and Random

Forest algorithms show consistently low errors, the other 5 algorithms all had their root

mean squared and mean absolute errors rise noticeably. The increase in the errors is steeper

towards the fourth time lead value, 6 days, and then flattens out after.
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Figure 16. CoD Variation

The same trend occurs in the coefficient of determination graph, but in the opposite direction

since larger errors correspond to smaller coefficients of determination. Likewise, the coefficients

of determination for the two best algorithms stay constant right below 1.0. For the other

5 algorithms, coefficients of determination decrease rapidly up to time lead at 6 days, and

relatively slows down. Overall, these three charts lead to the conclusion that an increased

time lead causes a less accurate modeling and a bigger deviation error.
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Conclusion

Through examining results of machine learning implementation on wind power series the

report has developed an original insight into the the performance of several machine learning

algorithms from an open-source package. The ultimate goal in this project was to test out

the modeling done by the open-source machine learning algorithms with the real wind power

data and visually represent the results on multiple farms with and without variations in time

lead. Open-source machine learning packages like Scikit-Learn provide a convenient method

of evaluating data modeling, but it has its drawbacks in that it may lead to implementing

the algorithms without full understanding their principles. From the overall analysis it was

concluded the best algorithms that closely predicted the wind power output were Random

Forest and Gradient Boosting despite their large computing time, while the worst were

Nearest Neighbor and Neural Networks. As discussed previously, these results were expected

since Nearest Neighbor and Neural Networks are more responsive to parameter tuning which

was not exercised in the current project than are other algorithms. Additional analysis on

variation of time lead has led to the verification of the hypothesis that the increase in time

lead causes more deviation errors for all algorithms. There still are many other areas to

work on in the further studies. As mentioned above, there is an opportunity to boost the

performance of some algorithms by tuning their parameters. Also, cross validation stage

and spatial features can be added to the process which would further reduce the deviation

errors for all algorithms. On the other hand, variations on differentiating the testing process

include testing with different open-source packages like TensorFlow and testing with different

wind data such as those from the East coast. Furthermore, compared to sampling only one

scenario from each algorithm in the current project, sampling multiple scenarios at once will

give more interesting outlooks. This project along with its potentially improved parts in the

further studies will offer the essential asset to the growing development of predicting wind

power with machine learning.

15



References

[1] Kristin Bennet. Kernel Ridge Regression. Ed. by Rensselaer Polytechnic Institute. Accessed

March 3, 2017. url: http://homepages.rpi.edu/~bennek/class/mds/lecture/

lecture6-06.pdf.

[2] Dan Benyamin. A Gentle Introduction to Random Forests, Ensembles, and Performance

Metrics in a Commercial System. Ed. by CitizenNet. Accessed March 3, 2017. url:

http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-

performance-metrics.

[3] Yale University Statistics Department, ed. Linear Regression. Accessed March 3, 2017.

url: http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm.

[4] Energy.gov. Office of Energy Efficiency Renewable Energy., ed. Advantages and Challenges

of Wind Energy. Accessed March 3 , 2017. url: https://energy.gov/eere/wind/

advantages-and-challenges-wind-energy.

[5] Sunil Ray. Quick Introduction to Boosting Algorithms in Machine Learning. Ed. by

Analytics Vidhya. Accessed March 3, 2017. url: https://www.analyticsvidhya.com/

blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/.

[6] Sunil Ray. Understanding Support Vector Machine algorithm from examples (along

with code). Ed. by Analytics Vidhya. Accessed March 3, 2017. url: https://www.

analyticsvidhya.com/blog/2015/10/understaing- support- vector- machine-

example-code/.

[7] Statistica, ed. k-Nearest Neighbors. Accessed March 3, 2017. url: http://www.statsoft.

com/textbook/k-nearest-neighbors.

[8] University of Wisconsin Computer Science, ed. A Basic Introduction to Neural Networks.

Accessed March 3 , 2017. url: http://pages.cs.wisc.edu/~bolo/shipyard/neural/

local.html.

16



Appendix

The following figures are side-by-side graphs of predictions along with their variation graphs

with time lead at 24 days.

Figure 17. Farm117 1 day Figure 18. Farm117 24 days

Figure 19. Farm120 1 day Figure 20. Farm120 24 days
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Here are some information about the machine, and software versions.

Machine Information:

Computer : Asus Q550L

Operating system : Windows 10 (C) 2016 Microsoft Corporation

System type : 64-bit Operating System, x64-based processor

Processor : Intel(R) Core(TM) i7-4712HQ CPU @2.3GHz

Memory : 16.0GB

Software Information:

Eclipse

Python 3.5.1
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The following is the Code “read.py” for data pre-processing. It obtains the wind turbine parameters

from NREL west wind dataset.

import csv

def readData(wf_name, wf_idx, resolution, year):

# get the wind turbine parameters from NREL west wind dataset

# each csv file contains a 10-min wind output in a year with 30MW

# input:

# wf_name: the cell matrix for wind farm info, nLocation*1

# matrix, each cell contains the wf name list in csv

# wf_idx: the matrix store the numbered folder contans csv

# year: if year is 2006 or 2005, have 52560 measurements

# resolution: the resolution within one hour

# output:

# speed: averaged wind speed among local area, nLocation*1 cell in

# desired resolution

# gen: total wind power generation among local area, nLocation*1 cell

# in desired resolution

# wind_param: the output wind csv data file in the cell format, each

# cell is one Location, contains n turbine

# capacity: the capacity of each wind farm, nLocation*1 matrix

# data:

# load data under the local folder ’2006/’

# ========================================================================

nLocation = len(wf_name) # number of sites

if year % 4 == 0: # number of measurements

nRow = 6*24*366 # lunar year

else:

nRow = 6*24*365

# initialization

wind_param = []

speed_temp = []

speed = []

gen = []

gen_temp = []

capacity = []

for iLocation in range(nLocation):
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wf_id = wf_idx[iLocation] # the name (number) of iLocation in RTS

farm_idx = wf_name[iLocation] # pick wind sites in ith Location

nSite = len(farm_idx) # number of sites in iLocation

turbine_param = np.zeros((nSite, nRow, 4)) # parameters in each farm

# copy from csv files into the matrices

for iSite in range(nSite):

with open(’./2006/2006/’ + str(wf_id) + ’/’ + str(farm_idx[iSite]) + ’.csv’) as f:

reader = csv.reader(f)

next(reader)

count = 0

for row in reader:

turbine_param[iSite, count, :] = row[1:]

count += 1

# capacity

loc_capacity = 30*nSite

capacity.append(loc_capacity)

wind_param.append(turbine_param)

speed_temp.append(np.mean(turbine_param[:,:,0],axis=0))

gen_temp.append(np.sum(turbine_param[:,:,3], axis=0)/(loc_capacity))

# 1-hr resolution

if resolution == 1:

speed_per_hour = np.reshape(speed_temp[iLocation], (nRow//6, 6))

gen_per_hour = np.reshape(gen_temp[iLocation], (nRow//6, 6))

speed.append(np.mean(speed_per_hour, axis=1)/30)

gen.append(np.mean(gen_per_hour, axis=1))

# 10-min resolution

elif resolution == 6:

speed.append(speed_temp[iLocation]/30)

gen.append(gen_temp[iLocation])

else:

print ("desired resolution is not valid.")

speed = np.array(speed)

gen = np.array(gen)

wind_param = np.array(wind_param)

capacity = np.array(capacity)

return speed, gen, wind_param, capacity
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The following is the Code “parameter gen.py” for data pre-processing. It obtains program parameters

based on given input.

from collections import namedtuple

import numpy as np

def parameter_gen(x, t, t_scale, t_lead, space_bool):

# obtain program parameters based on given input

# ==============================================

# input:

# x: a cell array, each cell is a data series

# t: number of days considering for the feature

# t_scale: number of points in one hour

# t_lead: leading time for prediction = t_horizon

# space_bool: 1 if space considered, 0 otherwise

# output:

# para: a structure indicating many parameters

# ========= the system parameters ==================

# initialize a structure of parameters called para

para = namedtuple("para", "nFarm nSeries horizon resolution fea_hist fea_pred fea_type spa_hist spa_pred spa_nloc drop_length nSample nFeature evaluation")

[nFarm, nSeries] = np.shape(x) # number of wind farms and overall datapoints

horizon = t_lead # forecast horizon, lead time

resolution = t_scale # hourly data

# ========== feature building ====================

fea_hist = 24*t # input feature length for history hours before prediction

fea_pred = 24*t//2 # input feature length for day-ahead predictions

fea_type = 1 # number of features type include power and speed

if (space_bool == 0):

spa_hist = 0 # input feature length for nearby farm history days

spa_pred = 0 # input feature length for nearby farm day-ahead predictions

spa_nloc = 0 # number of extra locations builds

elif (space_bool == 1):

spa_hist = 24*t

spa_pred = 24*t//2

spa_nloc = 3

drop_length = resolution*fea_hist + horizon

# dropped data length
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nSample = nSeries-drop_length # total sample size

nFeature = ((fea_hist+fea_pred)*fea_type+(spa_hist+spa_pred)*spa_nloc)*resolution

# total length for each input vector

# =========== evaluation criteria ==================

evaluation = ’RMSE’ # evaluation criteria: MAE or RMSE

p = para(nFarm, nSeries, horizon, resolution, fea_hist, fea_pred, fea_type, spa_hist, spa_pred, spa_nloc, drop_length, nSample, nFeature, evaluation)

return p
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The following is the Code “feature build.py” for data pre-processing. It builds the input vector

and output from known time series without spatial features.

import numpy as np

def feature_build(power, speed, para):

# build the input vector and output from known time series without spatial

# ===========================================================

# skip the first part that don’t have the data

# input features include the most recent power and near future prediction

# output target is the the actual power output

# features are in the recent order, the prediction, the more recent,

# and nearby sites the index is smaller

# input:

# power: nLoc*1 cell, each with wind generation, also as input feature

# speed: nLoc*1 cell, each with wind speed, as input feature

# para: parameters to decide the whole model information

# output:

# feature: nLoc*1 cell, each contains m_sample*nFeatures

# target: nLoc*1 cell, each contains m_sample*2,col1_true,col2_pred

nFarm = para.nFarm

nDrop = para.drop_length # length of dropped data = fea_hist + horizon

nSample = para.nSample # number of whole sample excluding dropped data

nFeaTotal = para.nFeature # total feature length = fea_hist+fea_pred if no space

nFeaHist = para.fea_hist*para.resolution

# feature length for power series (fea_hist)

nFeaSpeed = nFeaHist//2 # feature length for speed series (fea_pred)

feature = []

target = []

# building features

for iFarm in range(nFarm):

fea_temp = np.empty((nSample, nFeaTotal))

# set up input feature

for iFea1 in range(nFeaHist):

# add history as input feature
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fea_temp[:,iFea1] = power[iFarm][nDrop-para.horizon-iFea1 : para.nSeries-para.horizon-iFea1]

for iFea2 in range(nFeaSpeed):

fea_temp[:,nFeaHist+iFea2] = speed[iFarm][nDrop-iFea2 : para.nSeries-iFea2]

# set up target output, throw away the drop_length data

temp = [power[iFarm][nDrop:para.nSeries]]

target.append(np.transpose(temp))

feature.append(fea_temp)

feature = np.array(feature)

target= np.array(target)

return feature, target
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The following is the Code “main1.py”. It performs data processing and scenario generation and

ends with graphical prediction results for three testing days and three testing farms.

import os

import numpy as np

import math

import time

import matplotlib.pyplot as plt

from Input.read import readData

from Input.parameter_gen import parameter_gen

from Input.feature_build import feature_build

from sklearn import linear_model

from sklearn import svm

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn import neural_network

from sklearn import kernel_ridge

from sklearn import neighbors

# WIND FORECAST CORRECTIVE SCENARIOS for 19 wind farms

# This script ends with graphical prediction results for

# three testing days and three testing farms.

# =================================================================

# generate wind scenarios based on historic data

# considering spatial and temporal correlation

# provide scenarios with better forecast

# provide scenarios with uncertainty quantification

# provide reasonable boundary with scenarios

# combining multiple data mining techniques

# including Random Forest, SVM, Linear Regression, KNN, NN

# the data is based on the NREL Western Wind Dataset

# Load Data

start_time = time.time()

year = 2006

resolution = 1 # 1 hr resolution

speed = []

gen = []

# directory where the data is stored

dataDir = os.listdir(’./’ + str(year) + ’/’ + str(year))

# number of wind farms in the directory
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nLocation = len(dataDir)

# list storing names of wind farms

wf_idx = []

for dirname in dataDir:

wf_idx.append(dirname)

nSites = 0

# list storing names of wind sites in each wind farm

wf_name = []

for dirname in dataDir:

temp = []

for filename in os.listdir(’./’ + str(year) + ’/’ + str(year) + ’/’ + dirname):

temp.append(os.path.splitext(filename)[0])

nSites = nSites+1

wf_name.append(temp)

wf_idx = np.array(wf_idx)

wf_name = np.array(wf_name)

print(nSites) # 230 in total

# Output cleaned wind speed and power based on the given data

speed, gen, wind_param, capacity = readData(wf_name, wf_idx, resolution, year)

# Load Parameters

para = parameter_gen(gen, 5, resolution, 1, 0)

# Build Feature and Target

feature, target = feature_build(gen, speed, para)

print(np.shape(feature[0]))

print(np.shape(target[0]))

# Build Training and Test sets

days = [124, 221, 306] # testing days: can be manipulated

farms = [0, 3, 6] # testing farms: can be manipulated

farm_axis = np.arange(nLocation)

for f in range(len(farms)):

fig = plt.figure()

for i in range(len(days)):

# prediction hours: 7 days

test_hour = np.arange((days[i]-1) * 24, (days[i]+6) * 24) - para.drop_length

test_time = np.transpose(test_hour)
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train_length = 2160 # length of training sets

nFarm = nLocation

xTr = []

yTr = []

xTe = []

yTe = []

# build training and testing sets here

for iFarm in range(nFarm):

xTr1 = feature[iFarm][test_time[0]-train_length : test_time[0]]

yTr1 = target[iFarm][test_time[0]-train_length : test_time[0]]

xTe1 = feature[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

yTe1 = target[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

xTr.append(xTr1)

yTr.append(yTr1)

xTe.append(xTe1)

yTe.append(yTe1)

xTr = np.array(xTr)

yTr = np.array(yTr)

xTe = np.array(xTe)

yTe = np.array(yTe)

print(np.shape(xTr[0]))

print(np.shape(yTr[0]))

print(np.shape(xTe[0]))

print(np.shape(yTe[0]))

# Scikit-Learn commands for multiple algorithms

Estimators = {

"Linear Regression": linear_model.LinearRegression(),

"Support Vector Machine": svm.LinearSVR(),

"Kernel Ridge": kernel_ridge.KernelRidge(),

"Random Forest": RandomForestRegressor(),

"Gradient Boosting": GradientBoostingRegressor(),

"Neural Network": neural_network.MLPRegressor(),

"Nearest Neighbor": neighbors.KNeighborsRegressor()

}

# dictionary form to store prediction results
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y_test_predict = dict()

for name, estimator in Estimators.items():

t1 = time.time() # for computing time

print (name, "------")

# fit the training sets

estimator.fit(xTr[farms[f]], yTr[farms[f]].reshape(len(yTr[farms[f]]),))

# predict using each algorithm

y_test_predict[name] = estimator.predict(xTe[farms[f]])

# the wind power should be in the range of 0 to 1, so outliers should be taken care of here.

for h in range(len(y_test_predict[name])):

if (y_test_predict[name][h] < 0):

y_test_predict[name][h] = 0

elif (y_test_predict[name][h] > 1):

y_test_predict[name][h] = 1

# root mean squared error

rmse = math.sqrt(np.mean((y_test_predict[name] - yTe[farms[f]].reshape(len(yTe[farms[f]]),))**2))

# mean absolute error

mae = np.mean(abs(y_test_predict[name] - yTe[farms[f]].reshape(len(yTe[farms[f]]),)))

t2 = time.time()

# Print the results of the performance of each algorithm

print ("Coefficient of Determination:", estimator.score(xTe[farms[f]], yTe[farms[f]].reshape(len(yTe[farms[f]]),)))

print ("Root-Mean-Squared Error:", rmse)

print ("Mean Absolute Error:", mae)

print ("Time for each algorithm:", t2-t1)

print()

# Visualize the prediction results using MatplotLib

ax = plt.subplot(’%d%d%d’ %(len(days),1,i+1))

for name, estimator in Estimators.items():

ax.plot(y_test_predict[name], label=name)

ax.plot(yTe[farms[f]], label="Real Data", linestyle=’--’)

ax.set_title(’Day %d’ % days[i], fontsize=15)

ax.set_xlim(0,167)

ax.set_ylim(0,1)

fig.suptitle(’Prediction Result for Farm %s’ % wf_idx[farms[f]], fontsize=30)

plt.xlabel(’7 days since the requested day (hrs)’, fontsize=20)

plt.ylabel(’Power Generated’, fontsize=20)

plt.legend(loc=’center left’, bbox_to_anchor=(0.9, 1),
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fancybox=True, shadow=True)

plt.show()

end_time = time.time()

print("Entire Program time: ", end_time - start_time)
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The following is the Code “main2.py”. It performs data processing and scenario generation and

ends with graphical results for errors, coefficients of determination, and computing time for all 19

farms.

import os

import numpy as np

import math

import time

import matplotlib.pyplot as plt

from Input.read import readData

from Input.parameter_gen import parameter_gen

from Input.feature_build import feature_build

from sklearn import linear_model

from sklearn import svm

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn import neural_network

from sklearn import kernel_ridge

from sklearn import neighbors

# WIND FORECAST CORRECTIVE SCENARIOS for 19 wind farms and ERRORS

# This script ends with graphical results for errors,

# coefficients of determination, and computing time for all 19 farms

# =================================================================

# generate wind scenarios based on historic data

# considering spatial and temporal correlation

# provide scenarios with better forecast

# provide scenarios with uncertainty quantification

# provide reasonable boundary with scenarios

# combining multiple data mining techniques

# including Random Forest, SVM, Linear Regression, KNN, NN

# the data is based on the NREL Western Wind Dataset

# Load Data

start_time = time.time()

year = 2006

resolution = 1 # 1 hr resolution

speed = []

gen = []

# directory where the data is stored

dataDir = os.listdir(’./’ + str(year) + ’/’ + str(year))
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# number of wind farms in the directory

nLocation = len(dataDir)

# list storing names of wind farms

wf_idx = []

for dirname in dataDir:

wf_idx.append(dirname)

# list storing names of wind sites in each wind farm

wf_name = []

for dirname in dataDir:

temp = []

for filename in os.listdir(’./’ + str(year) + ’/’ + str(year) + ’/’ + dirname):

temp.append(os.path.splitext(filename)[0])

wf_name.append(temp)

wf_idx = np.array(wf_idx)

wf_name = np.array(wf_name)

# Output cleaned wind speed and power based on the given data

speed, gen, wind_param, capacity = readData(wf_name, wf_idx, resolution, year)

# Load Parameters

para = parameter_gen(gen, 5, resolution, 1, 0)

# Build Feature and Target

feature, target = feature_build(gen, speed, para)

print(np.shape(feature[0]))

print(np.shape(target[0]))

# Build Training and Test sets

days = [124, 221, 306] # testing days: can be manipulated

farms = [0, 3, 6] # testing farms: can be manipulated

# x-axis with all 19 farms

farm_axis = np.arange(nLocation)

# Scikit-Learn commands for multiple algorithms

Estimators = {

"Linear Regression": linear_model.LinearRegression(),

"Support Vector Machine": svm.LinearSVR(),

"Kernel Ridge": kernel_ridge.KernelRidge(),

"Random Forest": RandomForestRegressor(),

"Gradient Boosting": GradientBoostingRegressor(),
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"Neural Network": neural_network.MLPRegressor(),

"Nearest Neighbor": neighbors.KNeighborsRegressor(),

}

rmse_avg = dict()

mae_avg = dict()

CoDet_avg = dict()

time_avg = dict()

for name, estimator in Estimators.items():

rmse_avg[name] = np.empty((len(days),len(farm_axis)))

mae_avg[name] = np.empty((len(days),len(farm_axis)))

CoDet_avg[name] = np.empty((len(days),len(farm_axis)))

time_avg[name] = np.empty((len(days),len(farm_axis)))

for i in range(len(days)):

# prediction hours: 7 days

test_hour = np.arange((days[i]-1) * 24, (days[i]+6) * 24) - para.drop_length

test_time = np.transpose(test_hour)

train_length = 2160 # length of training sets

nFarm = nLocation

xTr = []

yTr = []

xTe = []

yTe = []

# build training and testing sets here

for iFarm in range(nFarm):

xTr1 = feature[iFarm][test_time[0]-train_length : test_time[0]]

yTr1 = target[iFarm][test_time[0]-train_length : test_time[0]]

xTe1 = feature[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

yTe1 = target[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

xTr.append(xTr1)

yTr.append(yTr1)

xTe.append(xTe1)

yTe.append(yTe1)

xTr = np.array(xTr)

yTr = np.array(yTr)

xTe = np.array(xTe)

yTe = np.array(yTe)
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# dictionary form to store prediction results

y_test_predict = dict()

for name, estimator in Estimators.items():

temprmse = []

tempmae = []

tempcoef = []

temptime = []

for f in range(len(farm_axis)):

t1 = time.time() # for computing time

# fit the training sets

estimator.fit(xTr[f], yTr[f].reshape(len(yTr[f]),))

# predict using each algorithm

y_test_predict[name] = estimator.predict(xTe[f])

# the wind power should be in the range of 0 to 1, so outliers should be taken care of here.

for h in range(len(y_test_predict[name])):

if (y_test_predict[name][h] < 0):

y_test_predict[name][h] = 0

elif (y_test_predict[name][h] > 1):

y_test_predict[name][h] = 1

# root mean squared error

rmse = math.sqrt(np.mean((y_test_predict[name] - yTe[f].reshape(len(yTe[f]),))**2))

# mean absolute error

mae = np.mean(abs(y_test_predict[name] - yTe[f].reshape(len(yTe[f]),)))

t2 = time.time()

temprmse.append(rmse)

tempmae.append(mae)

tempcoef.append(estimator.score(xTe[f], yTe[f].reshape(len(yTe[f]),)))

temptime.append(t2-t1)

rmse_avg[name][i] = np.array(temprmse)

mae_avg[name][i] = np.array(tempmae)

CoDet_avg[name][i] = np.array(tempcoef)

time_avg[name][i] = np.array(temptime)

# Visualize the error results for 19 farms using MatplotLib

# Root Mean Squared Error

fig1 = plt.figure()

plt.title("RMSE", fontsize=30)

plt.xlabel("Farms", fontsize=20)

plt.ylabel("Values", fontsize=20)
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for name, estimator in Estimators.items():

plt.plot(farm_axis, np.mean(rmse_avg[name], axis=0), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

# Mean Absolute Error

fig2 = plt.figure()

plt.title("MAE", fontsize=30)

plt.xlabel("Farms", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(farm_axis, np.mean(mae_avg[name], axis=0), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

# Coefficient of Determination

fig3 = plt.figure()

plt.title("Coefficient of Determination", fontsize=30)

plt.xlabel("Farms", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(farm_axis, np.mean(CoDet_avg[name], axis=0), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

# Computing Time

fig4 = plt.figure()

plt.title("Computing Time", fontsize=30)

plt.xlabel("Farms", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(farm_axis, np.mean(time_avg[name], axis=0), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

plt.show()

end_time = time.time()

print("Entire Program time: ", end_time - start_time)
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The following is the Code “main3.py”. It performs data processing and scenario generation and ends

with graphical prediction results for three testing days and three testing farms but with different

time leads. It also provides errors and coefficients of determination for different time leads.

import os

import numpy as np

import math

import time

import matplotlib.pyplot as plt

from Input.read import readData

from Input.parameter_gen import parameter_gen

from Input.feature_build import feature_build

from sklearn import linear_model

from sklearn import svm

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn import neural_network

from sklearn import kernel_ridge

from sklearn import neighbors

# WIND FORECAST CORRECTIVE SCENARIOS for 19 wind farms with VARIATION in time_lead

# This script ends with graphical prediction results for three testing days and

# three testing farms but with different time_leads. It also provides

# errors and coefficients of determination for different time_leads.

# =================================================================

# generate wind scenarios based on historic data

# considering spatial and temporal correlation

# provide scenarios with better forecast

# provide scenarios with uncertainty quantification

# provide reasonable boundary with scenarios

# combining multiple data mining techniques

# including Random Forest, SVM, Linear Regression, KNN, NN

# the data is based on the NREL Western Wind Dataset

# Load Data

start_time = time.time()

year = 2006

resolution = 1 # 1 hr resolution

speed = []

gen = []
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# directory where the data is stored

dataDir = os.listdir(’./’ + str(year) + ’/’ + str(year))

# number of wind farms in the directory

nLocation = len(dataDir)

# list storing names of wind farms

wf_idx = []

for dirname in dataDir:

wf_idx.append(dirname)

# list storing names of wind sites in each wind farm

wf_name = []

for dirname in dataDir:

temp = []

for filename in os.listdir(’./’ + str(year) + ’/’ + str(year) + ’/’ + dirname):

temp.append(os.path.splitext(filename)[0])

wf_name.append(temp)

wf_idx = np.array(wf_idx)

wf_name = np.array(wf_name)

# Output cleaned wind speed and power based on the given data

speed, gen, wind_param, capacity = readData(wf_name, wf_idx, resolution, year)

# varied Time Leads

t_lead = [1, 2, 4, 6, 12, 24]

rmse_avg = dict()

mae_avg = dict()

CoDet_avg = dict()

days = [124, 221, 306] # testing days: can be manipulated

farms = [0, 3, 6] # testing farms: can be manipulated

# x-axis with 10 farms

farm_axis = np.arange(10)

# Scikit-Learn commands for multiple algorithms

Estimators = {

"Linear Regression": linear_model.LinearRegression(),

"Support Vector Machine": svm.LinearSVR(),

"Kernel Ridge": kernel_ridge.KernelRidge(),

"Random Forest": RandomForestRegressor(),

"Gradient Boosting": GradientBoostingRegressor(),

"Neural Network": neural_network.MLPRegressor(),
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"Nearest Neighbor": neighbors.KNeighborsRegressor(),

}

for name, estimator in Estimators.items():

rmse_avg[name] = np.empty((len(t_lead), len(days)))

mae_avg[name] = np.empty((len(t_lead), len(days)))

CoDet_avg[name] = np.empty((len(t_lead), len(days)))

for t in range(len(t_lead)):

# Load Parameters

para = parameter_gen(gen, 5, resolution, t_lead[t], 0)

# Build Feature and Target

feature, target = feature_build(gen, speed, para)

# Build Training, Validation, and Test sets

for i in range(len(days)):

# prediction hours: 7 days

test_hour = np.arange((days[i]-1) * 24, (days[i]+6) * 24) - para.drop_length

test_time = np.transpose(test_hour)

train_length = 2160 # length of training sets

nFarm = nLocation

xTr = []

yTr = []

xTe = []

yTe = []

# build training and testing sets here

for iFarm in range(nFarm):

xTr1 = feature[iFarm][test_time[0]-train_length : test_time[0]]

yTr1 = target[iFarm][test_time[0]-train_length : test_time[0]]

xTe1 = feature[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

yTe1 = target[iFarm][test_time[0]:test_time[len(test_time)-1]+1]

xTr.append(xTr1)

yTr.append(yTr1)

xTe.append(xTe1)

yTe.append(yTe1)

xTr = np.array(xTr)

yTr = np.array(yTr)

xTe = np.array(xTe)

yTe = np.array(yTe)
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# dictionary form to store prediction results

y_test_predict = dict()

for name, estimator in Estimators.items():

temprmse = []

tempmae = []

tempcoef = []

temptime = []

for f in range(len(farm_axis)):

# fit the training sets

estimator.fit(xTr[f], yTr[f].reshape(len(yTr[f]),))

# predict using each algorithm

y_test_predict[name] = estimator.predict(xTe[f])

# the wind power should be in the range of 0 to 1, so outliers should be taken care of here.

for h in range(len(y_test_predict[name])):

if (y_test_predict[name][h] < 0):

y_test_predict[name][h] = 0

elif (y_test_predict[name][h] > 1):

y_test_predict[name][h] = 1

# root mean squared error

rmse = math.sqrt(np.mean((y_test_predict[name] - yTe[f].reshape(len(yTe[f]),))**2))

# mean absolute error

mae = np.mean(abs(y_test_predict[name] - yTe[f].reshape(len(yTe[f]),)))

temprmse.append(rmse)

tempmae.append(mae)

tempcoef.append(estimator.score(xTe[f], yTe[f].reshape(len(yTe[f]),)))

rmse_avg[name][t][i] = np.mean(temprmse)

mae_avg[name][t][i] = np.mean(tempmae)

CoDet_avg[name][t][i] = np.mean(tempcoef)

# Visualize the error results for different time leads using MatplotLib

fig1 = plt.figure()

plt.title("RMSE", fontsize=30)

plt.xlabel("T_Leads", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(t_lead, np.mean(rmse_avg[name], axis=1), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

plt.xlim(1,24)
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fig2 = plt.figure()

plt.title("MAE", fontsize=30)

plt.xlabel("T_Leads", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(t_lead, np.mean(mae_avg[name], axis=1), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

plt.xlim(1,24)

fig3 = plt.figure()

plt.title("Coefficient of Determination", fontsize=30)

plt.xlabel("T_Leads", fontsize=20)

plt.ylabel("Values", fontsize=20)

for name, estimator in Estimators.items():

plt.plot(t_lead, np.mean(CoDet_avg[name], axis=1), label=name)

plt.legend(loc=’center left’, bbox_to_anchor=(0.95, 0.3),

fancybox=True, shadow=True)

plt.xlim(1,24)

plt.show()

end_time = time.time()

print("Entire Program time: ", end_time - start_time)

39


